
django-merlin Documentation
Release 0.8

Travis Chase, Chad Gallemore

Apr 18, 2017

Contents

1 Getting started 1
1.1 Session Wizard . 1

2 API documentation 5
2.1 SessionWizard . 5
2.2 Step . 8
2.3 WizardState . 9

3 Indices and tables 11

i

ii

CHAPTER 1

Getting started

Session Wizard

Django comes with an optional “form wizard” application that allows you to split forms across multiple web pages in
a sequential order. This ability is provided by using the FormWizard class. You would use this when you have, for
example, a long registration process that needs to be split up in small digestable chunks, making it easier on your users
to complete the process.

You can see the FormWizard documentation at: http://docs.djangoproject.com/en/dev/ref/contrib/formtools/
form-wizard/

Is there a need for a different one?

In a word, yes. A few things the FormWizard does that may not work for your projects, as it did not for ours.
First, the FormWizard using an HTTP POST to process a form. This makes it tough when you are trying to use the
browser’s back button to change some data on a previous step. The FormWizard checks for any GET requests and
moves you to the first step in the wizard process, YUCK! Secondly, the FormWizard docs recommends using your
wizard subclass as the callable in a urlconf in your urls.py. This is a really nice feature except that it will only create
one copy of your FormWizard for all requests. This works well until you start messing with the hooks it provides
to inserting or removing steps based on data from a form submission. Once you insert or remove a form, the steps are
now changed for any subsequent users.

How is SessionWizard different?

1. The SessionWizard is given a list of Step objects instead of a list of Django Form classes.

2. SessionWizard stores all of its state in the Django Session object. This allows you to use the
SessionWizard in the urlconf and keep state seperate by user (or session). When the SessionWizard
starts it makes a copy of the Step list for the session so it can be manipulated independantly of any other session.

3. The SessionWizard processes all GET requests as a form view and only moves to the next step in the sequence
on a succesful POST request. This allows for the browser’s Back button to function correctly.

1

http://docs.djangoproject.com/en/dev/ref/contrib/formtools/form-wizard/
http://docs.djangoproject.com/en/dev/ref/contrib/formtools/form-wizard/

django-merlin Documentation, Release 0.8

4. Each Step in the sequence has a unique slug for that step. This slug is used in the urlconf to be able to go to
any part of the wizard. This allows you to provide proper “Back” and “Next” buttons on your forms.

How to use SessionWizard

Here is the basic workflow needed to use the SessionWizard object:

1. Make sure you have enabled the Django session middleware.

2. Create a subclass the SessionWizard class and override the done() method. The done() method allows
you to collect all of the validated form data, process that data and move on to the next web page after successful
processing of the wizard. You are able to redirect out of done if there are some post processing errors you need
the user to be notified of. If you have processed everything correctly then you can call the clear() method
to clean up the data stored in the session. If clear() is not called then the next time the same session goes
through the wizard the existing form data from the original run will be put into the forms.

3. Override the get_template() method to return the path to the template the forms should use. The default
is to return “forms/wizard.html”, which you provide. Based on the step passed in you could return different
templates for different forms.

4. Create a url that will be the entry point of your wizard. This url should provide a (?
P<slug>[A-Za-z0-9_-]+) option in the url pattern.

5. Point this url to the subclass of SessionWizard, providing a list of Step objects that the wizard should
process in the order it should process them.

6. Sit back and enjoy form wizard goodness!

How it works

1. The user makes a GET request to your wizard url with the first slug of the sequence.

2. The wizard returns the form using the template you specify.

3. The user submits the form using a POST request.

4. The wizard validates the form data. If the data is invalid it returns the user to the current form and you can
display to the user any errors that have occured. If the data is valid then the wizard stores the clean data in its
state object.

5. If there is another step in the process the wizard sends a redirect to the user to the next step in the sequence. If not
next step is found the wizard then calls the done() method, which expects to return some HttpResponse
to the user letting them know they are finished with the process.

Creating templates for the forms

You’ll need to create a template that renders the step’s form. By default, every form uses a template called forms/
wizard.html. (You can change this template name by overriding get_template())

The template recieves the following context:

• current_step – The current Step being processed

• form– The current form for the current step (with any data already available)

• previous_step – The previous Step or None

• next_step – The next Step or None

2 Chapter 1. Getting started

django-merlin Documentation, Release 0.8

• url_base – The base URL that can be used in creating links to the next for previous steps

• extra_context – Any extra context you have provided using overriding the process_show_form()
method

A couple of goodies

There are couple of hooks in the SessionWizard that allow you to modify the execution of the wizard in interesting
ways. For more in depth information make sure to check out the API docs for SessionWizard.

• process_show_form() – allows you to provide any extra context data that needs to be provided to the
template for processing

• process_step() – allows for changing the internal state of the wizard. For example, you could use this
hook to add or remove steps in the process based off some user submitted information. You can use the methods
remove_step(), insert_before() and insert_after() to accomplish this.

• get_template() – allows you to return a template path to use for processing the currently executing step.

• render_form() – allows you the ability to render the form however you see fit. The default is to use
the render_to_response Django shortcut; but, you could use this hook to provide a PageAssembly
render method from the excellent django-crunchyfrog project found at : http://github.com/localbase/
django-crunchyfrog

• initialize() – allows you the ability to initialize the wizard at each request. This can be used to put data
into the wizard state object that can then be used in the done() method.

I am tired, can’t I just cancel this wizard?

When you have a long form process and the user decides they don’t want to finish the wizard you would to provide a
Cancel button or link they can click that will reset the wizard and redirect the user to a different screen. It would be
great if the SessionWizard provided a way to handle this and also clean up the data it has been tracking as well. Well
pine no more because the SessionWizard has got your back!

When you want to cancel a wizard you can just pass “cancel” as the step slug in the url. By just doing this the wizard
will, by default, clear the session data it was tracking and send an HttpResponseRedirect to the / url. You can provide
the query string parameter ?rd=yoururl to redirect to a different url. If you have a Step with the slug of “cancel” then
the wizard will proceed to this step and you will have to handle the cancel action yourself.

For example, let’s say we have a wizard and url /mywizard and we have steps “form1” and “form2”.

1. The user sends a GET request to /mywizard/form1.

2. The user fills out the form information and clicks the Next button.

3. The browser sends a POST request with the form data and the wizard does its tricks and redirects
the user to /mywizard/form2.

4. The user is sleepy and decides to come back tomorrow and finish the wizard. The user then clicks
the cancel link you have provided in the template.

5. The cancel link in your template points to /mywizard/cancel?rd=/thanks.

6. The browser sends a GET request to /mywizard/cancel?rd=/thanks and the SessionWizard sees it has
no step called “cancel”.

7. The SessionWizard calls its internal cancel method, which cleans up any session and form data the
wizard was tracking, and redirects the user to /thanks!

8. No harm, no foul.

1.1. Session Wizard 3

http://github.com/localbase/django-crunchyfrog
http://github.com/localbase/django-crunchyfrog

django-merlin Documentation, Release 0.8

• cancel() – cleans up the session data that has been tracked by the wizard. You can override this
method and provide other features you would like when cancelling, for example; You could track
the cancel actions from wizards.

Enjoy!

We are always looking for updates to make SessionWizard even better and provide even more form wizards to
this tool chest. If you have any questions, comments or suggestions please email us at development@localbase.com.
You can always particapte by using the projects GitHub account as well: http://github.com/localbase/django-merlin

Credits

This was mostly inspired by the Django form wizard and the SessionWizard snippet located here

4 Chapter 1. Getting started

mailto:development@localbase.com
http://github.com/localbase/django-merlin
http://djangosnippets.org/snippets/1078/

CHAPTER 2

API documentation

SessionWizard

class merlin.wizards.session.SessionWizard(steps)
This class allows for the ability to chop up a long form into sizable steps and process each step in sequence. It
also provides the ability to go back to a previous step or move on to the next step in the sequence. When the
wizard runs out of steps it calls a final function that finishes the form process. This class should be subclassed
and the subclass should at a minimum override the done method.

New in version 0.1.

Parameters steps – Provides a list of Step objects in the order in which the wizard should display
them to the user. This list can be manipulated to add or remove steps as needed.

cancel(request)
Hook used to cancel a wizard. This will be called when slug is passed that matches “cancel”. By default
the method will clear the session data.

Parameters request – A HttpRequest object for this request.

clear(request)
Removes the internal wizard state from the session. This should be called right be for the return from a
successful done() call.

done(request)
Responsible for processing the validated form data that the wizard collects from the user. This function
should be overridden by the implementing subclass. This function needs to return a HttpResponse
object.

Parameters request – A HttpRequest object that carries along with it the session used to
access the wizard state.

get_after(request, step)
Returns the next Step in the sequence after the provided Step. This function will return None if there
is no next step.

Parameters

5

django-merlin Documentation, Release 0.8

• request – A HttpRequest object that carries along with it the session used to access
the wizard state.

• step – The Step to use as an index for finding the next Step

get_before(request, step)
Returns the previous Step in the sequence after the provided Step. This function will return None if
there is no previous step.

Parameters

• request – A HttpRequest object that carries along with it the session used to access
the wizard state.

• step – The Step to use as an index for finding the next Step

get_cleaned_data(request, step)
Returns the cleaned form data for the provided step.

Parameters

• request – A HttpRequest object that carries along with it the session used to access
the wizard state.

• step – The Step to use to pull the cleaned form data.

get_form_data(request)
This will return the form_data dictionary that has been saved in the session. This will mainly be used in
the done to query for the form_data that has been saved throughout the wizard process.

Parameters request – A HttpRequest object that carries along with it the session used to
access the wizard state.

get_step(request, slug)
Returns the Step that matches the provided slug.

Parameters

• request – A HttpRequest object that carries along with it the session used to access
the wizard state.

• slug – The unique identifier for a particular Step in the sequence.

get_steps(request)
Returns the list of :class:‘Step‘s used in this wizard sequence.

Parameters request – A HttpRequest object that carries along with it the session used to
access the wizard state.

get_template(request, step, form)
Responsible for return the path to the template that should be used to render this current form.

Parameters

• request – A HttpRequest object that carries along with it the session used to access
the wizard state.

• step – The current Step that is being processed.

• form – The Django Form object that is being processed.

initialize(request, wizard_state)
Hook used to initialize the wizard subclass. This will be called for every request to the wizard before it
processes the GET or POST.

Parameters

6 Chapter 2. API documentation

django-merlin Documentation, Release 0.8

• request – A HttpRequest object for this request.

• wizard_state – The WizardState object representing the current state of the wiz-
ard. Extra information can be appended to the state so it can be available to Step‘s of the
wizard.

For example::

if ‘profile’ not in wizard_state: wizard_state.profile = request.user.get_profile()

insert_after(request, *args, **kwargs)
Inserts a new step into the wizard sequence after the provided step.

Parameters

• request – A HttpRequest object that carries along with it the session used to
access the wizard state.

• current_step – The Step to use as an index for inserting a new step

• step – The new Step to insert.

insert_before(request, *args, **kwargs)
Inserts a new step into the wizard sequence before the provided step.

Parameters

• request – A HttpRequest object that carries along with it the session used to
access the wizard state.

• current_step – The Step to use as an index for inserting a new step

• step – The new Step to insert.

process_GET(request, step)
Renders the Form for the requested Step

process_POST(request, step)
Processes the current Step and either send a redirect to the next Step in the sequence or finished the
wizard process by calling self.done

process_show_form(request, step, form)
Hook used for providing extra context that can be used in the template used to render the current form.

Parameters

• request – A HttpRequest object that carries along with it the session used to
access the wizard state.

• step – The current Step that is being processed.

• form – The Django Form object that is being processed.

process_step(request, step, form)
Hook for modifying the SessionWizard‘s internal state, given a fully validated Form object. The
Form is guaranteed to have clean, valid data.

This method should not modify any of that data. Rather, it might want dynamically alter the step list,
based on previously submitted forms.

Parameters

• request – A HttpRequest object that carries along with it the session used to
access the wizard state.

• step – The current Step that is being processed.

2.1. SessionWizard 7

django-merlin Documentation, Release 0.8

• form – The Django Form object that is being processed.

remove_step(request, *args, **kwargs)
Removes step from the wizard sequence.

Parameters

• request – A HttpRequest object that carries along with it the session used to
access the wizard state.

• step – The Step to remove.

render_form(request, step, form, context)
Renders a form with the provided context and returns a HttpResponse object. This can be overridden
to provide custom rendering to the client or using a different template engine.

Parameters

• request – A HttpRequest object that carries along with it the session used to
access the wizard state.

• step – The current Step that is being processed.

• form – The Django Form object that is being processed.

• context – The default context that templates can use which also contains any extra
context created in the process_show_form hook.

set_cleaned_data(request, *args, **kwargs)
Sets the cleaned form data for the provided step.

Parameters

• request – A HttpRequest object that carries along with it the session used to
access the wizard state.

• step – The Step to use to store the cleaned form data.

• data – The cleaned Form data to store.

Step

class merlin.wizards.utils.Step(slug, form)
When constucting a form wizard, the wizard needs to be composed of a sequental series of steps in which it
is to display forms to the user and collect the data from those forms. To be able to provide these forms to the
SessionWizard, you must first wrap the Django django.forms.Form in a Step object. The Step object
gives the ability to store the django.forms.Form class to be used, as well as, a unique slug to be used in
the wizard navigation.

New in version 0.1.

Parameters

• slug – Each step in the wizard should have a unique “slug” that identifies that Step in
the process. By using slugs the wizard has the ability to go forward, as well as, back in
the process adjusting what data it collects from the user.

• form – This MUST be a subclass of django.forms.Form or django.forms.
ModelForm. This should not be an instance of that subclass. The SessionWizard will
use this class to create instances for the user. If going back in the wizard process, the
SessionWizard will prepopulate the form with any cleaned data already collected.

8 Chapter 2. API documentation

django-merlin Documentation, Release 0.8

WizardState

class merlin.wizards.utils.WizardState(*args, **kwargs)
This class provides the ability for a SessionWizard to keep track of the important state of a multi-step form.
Instead of keeping track of the state through <input type="hidden"> fields, it subclasses the python
UserDict object and stores its data in the properties steps,‘‘current_step‘‘ and form_data.

New in version 0.1.

Parameters

• steps – A list of the Step objects that provide the sequence in which the forms should
be presented to the user.

• current_step – The current Step that the user is currently on.

• form_data – A dict of the cleaned form data collected to this point and referenced
using the Step‘s slug as the key to the dict

2.3. WizardState 9

django-merlin Documentation, Release 0.8

10 Chapter 2. API documentation

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

11

django-merlin Documentation, Release 0.8

12 Chapter 3. Indices and tables

Index

C
cancel() (merlin.wizards.session.SessionWizard method),

5
clear() (merlin.wizards.session.SessionWizard method), 5

D
done() (merlin.wizards.session.SessionWizard method), 5

G
get_after() (merlin.wizards.session.SessionWizard

method), 5
get_before() (merlin.wizards.session.SessionWizard

method), 6
get_cleaned_data() (mer-

lin.wizards.session.SessionWizard method),
6

get_form_data() (merlin.wizards.session.SessionWizard
method), 6

get_step() (merlin.wizards.session.SessionWizard
method), 6

get_steps() (merlin.wizards.session.SessionWizard
method), 6

get_template() (merlin.wizards.session.SessionWizard
method), 6

I
initialize() (merlin.wizards.session.SessionWizard

method), 6
insert_after() (merlin.wizards.session.SessionWizard

method), 7
insert_before() (merlin.wizards.session.SessionWizard

method), 7

P
process_GET() (merlin.wizards.session.SessionWizard

method), 7
process_POST() (merlin.wizards.session.SessionWizard

method), 7

process_show_form() (mer-
lin.wizards.session.SessionWizard method),
7

process_step() (merlin.wizards.session.SessionWizard
method), 7

R
remove_step() (merlin.wizards.session.SessionWizard

method), 8
render_form() (merlin.wizards.session.SessionWizard

method), 8

S
SessionWizard (class in merlin.wizards.session), 5
set_cleaned_data() (mer-

lin.wizards.session.SessionWizard method),
8

Step (class in merlin.wizards.utils), 8

W
WizardState (class in merlin.wizards.utils), 9

13

	Getting started
	Session Wizard

	API documentation
	SessionWizard
	Step
	WizardState

	Indices and tables

